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Abstract

The utilization of microorganisms for the production of chemicals at industrial
scale requires improvements/changes at physiological, metabolic, and genetic
levels. Natural or wild-type isolates produce minimal quantity of metabolites/
compounds required as a matter of survival. Hence, to use these microorganisms
at industrial level, different tools are required for strain improvement. These tools
will improve the metabolite production of industrial importance. The strain
improvement program traditionally employs classical mutagenesis approach
followed by screening and selection of mutant strain. Today, in-depth under-
standing of genetics and recombinant DNA technology helps in strain improve-
ment via metabolic and genetic engineering. These strain improvement
approaches has increased the product yield with subsequent cost reduction.
These approaches have also served other goals like reduction of undesirable
products and elucidating the complex biosynthetic pathways. Further combina-
tion of different omics approaches like transcriptomics and proteomics with
recombinant DNA technology has increased the prediction of accurate genes
responsible for overproduction of metabolites/compounds.
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2.1 Introduction

Microbes, the microscopically tiny miniatures, are the most abundant species present
in the environment. Microbes are found in all the ecological niches and working as
pillars of life on earth. Diverse microbes like bacteria, archaea, fungi, algae,
protozoa, and viruses are in existence from at least 3500 million years ago and are
supposed to be only present life forms on earth during that time. These life forms
encompass the most phylogenetically diverse life on earth with many lineages. They
dwell in every habitat including the terrestrial, aquatic, atmospheric environments
(Sean and Jack 2015). Their presence reshaped many ecological, aquatic, and
terrestrial niches including the extreme environments. Large diversity makes them
suitable to live, adapt, and tolerant in many conditions like extreme salty environ-
ment, anaerobic conditions, limited water availability, extreme pH. Although, the
microorganism grows in different niches, most important thing which makes them
special in the way the metabolic pathways change for their existence in a particular
environment. For example, although the microorganisms are microscopic with the
addition of simple nutrients, they can grow on nutritive media and can be easily
visualized by the naked eyes. This makes microbes to study them better. Addition-
ally, microbes have a surface area where it can easily absorb the nutrients and release
the end products. They also possess high metabolic activity making the system
highly reproductive.

The presence of novel enzymes, high- and low-molecular-weight compounds,
and metabolites makes microbes the best suitable source for industries to replace the
chemically synthetic procedures with bio-based processes. In a real scenario,
microorganisms can act as chemical factories for the production of commercially
important compounds. Microbes, isolated from the natural environment and
maintained in in vitro conditions, are mostly used for the industrial processes.
Nowadays with the indispensable role of microbes in biotechnology, the use of
microbes is increasing nearly in all the industries. The industrial sector like health
care, pharmaceutical, food and beverages, agriculture, and chemical all are making
efforts for generating bio-based/microbe-based process. The microbes, especially
from diverse niches, can work as an important source for the discovering novel
industrially important entities.

In any industrial process, it is important to consider that substitution to the
chemical source needs as effective as any organic/synthesized molecule and also
stable under different conditions. Microorganisms offer the best alternative as they
are easy to handle and its maintenance is very much economically viable. The most
challenging thing in the production of any compound using microorganism is to
maintain the efficiency of the microbial line throughout the generations. However, in
comparison to the mammalian and plant cells, microorganisms have a greater
potential to produce/grow at high density within a short time frame. This makes
the microbes feasible for large-scale industrial usage. The major disadvantage might
be there is a frequent genotypic change in microorganism due to which microbes are
highly variable and prone to the frequent mutations. Microorganisms could provide
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everlasting solutions for environmental and societal issues. It can be used for the
production of large volume commercially important drug, but the genetic stability
with low fermentation economics needs to be prioritized.

For industries, the production of compounds requires to be at relatively lower cost
with higher yields. Microorganisms that are used usually go through the strain
improvement program for obtaining/screening the best suitable strain for commer-
cial production of the industrially important compounds (Parekh et al. 2000).

2.1.1 Need and Significance for Strain Improvement

Microbes that live freely in the diverse ecological state are less likely to be suitable
for the production of novel commercially important compounds. The metabolism of
the wild-type isolate is inadequately adapted to the environment which is producing
the enzymes and intermediates needed for surviving in a particular physicochemical
condition. The regulation of metabolic and genetic machinery is controlled by the
sequence of genes in genome. To improve these microbial strains, there is a
prerequisite to alter the genes of metabolic pathways for overproduction of desired
metabolites. In some cases, these changes lead to structural alteration in specific
enzymes which increases the ability of enzyme to enhance its catalytic activity. Also,
there are chances that due to alteration in a specific region of the gene (promoter), it
can cause the deregulation of gene expression and metabolite overproduction. With
the preset data set enzymes function, rate-limiting steps in metabolic pathways,
environmental factors controlling growth help in designing screening strategies for
the generation of industrially important mutant. However, the outcome of any strain
development/selection depends on the kind and type of improvement we expect
from the microbes (Elander and Vournakis 1986).

Fermentation economics is majorly dependent on product’s manufacturing cost
and the raw material prerequisite for production. Although lower fermentation cost
can be availed by process designing like fermenter design and constructing material
of fermenter, but the improvement in microbial strains offers the best opportunity for
the cost reduction. Production enhancement through strain improvement for fermen-
tation process is the prime factor which makes a major impact in fermentation
economics.

Microbial engineering technique changes the genetic makeup of the
microorganisms. It has played an exemplary role in biotechnology due to its unique
features and ease of manipulation using recombinant DNA technology (Kou et al.
2016). For any strain to be used in industries, improvement is concerned with the
development or modification for exploiting its properties for the production of
compounds with less production cost and cheap raw material. The change in
fermentation dynamics works well for optimizing the process for maximum produc-
tion, but the strain improvement will give the desirable results at long time. The
different methods for the strain improvement are given in Fig. 2.1.

Strain improvement/engineering encompasses creation of strains with the follow-
ing properties.
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Mutagenesis

Metabolic
Engineering

Genetic
Engineering

Strain
Engineering

Fig. 2.1 Approaches of strain engineering

(a) Proficient assimilation of low-cost and complex raw materials.

(b) Removal of byproducts and change in the product ratios.

(c) Overproduction and excretion of native and foreign products.

(d) Short duration of fermentation time and easy scale-up.

(e) Tolerance of various metabolites produced (Parekh et al. 2000).

(f) Provide morphological changes in cell which is suitable for product separation.

The traditional empirical approach for the strain improvement is mutagenesis of
the isolated/screened strain. The mutagenesis in this approach is random and is
followed by the direct titer of large number of isolates. This approach has been
successful in most of strain improvement program in pharmaceutical industries
(Vinci and Byng 1999; Parekh et al. 2000). Although, the mutation is used to shift
the proportion of metabolites produced in the fermentation broth to a more favorable
distribution, elucidate the pathways of secondary metabolites, the yield of new
compounds, etc. The major disadvantage of these techniques is a laborious proce-
dure as a large number of isolates are processed in order to detect/screen the
improved strain. The possibility to reduce the amount of work can be better
understood by elucidating the biochemical and genetic mechanisms controlling the
different metabolic pathways. Recently, most of the research and academic centers
are developing the model organisms which can work effectively for system design-
ing at industrial scale (Rowlands 1984). In context to the above lines, the present
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chapter portrays different methods for strain engineering for improved production at
industrial scale.

2.2  Mutagenesis

Current research trend focuses on influencing the regulation of specific biochemical
pathways and strive for strain improvement to achieve the desirable conditions,
metabolite, or phenotype. The strain improvement can either be achieved via a
coherent metabolic engineering approach or by randomized mutagenesis strategy
(Zhang et al. 2015). Whatever the case may be, a comprehensive understanding of
genome and underlying metabolic mechanism of the microbial strain is of prime
importance. In order to improve strain by using mutagenesis approach, the informa-
tion of metabolic regulation mechanism, a well-defined rational plan and a robust
method is required (Hu et al. 2017). One of the key challenges in strain improvement
programs is involvement of enormous amount of time, cost, and need of skill labor
arising due to the complications in understanding multifarious interactions of meta-
bolic pathways. Furthermore, due to the poor understanding of underlying mecha-
nism and pinpointing of precise sequence for manipulation, the radical metabolic
engineering approach is always a time-consuming process (Lee and Kim 2015). On
the other hand, random mutagenesis involving physical mutagen such as UV is
rapid, relatively cost-effective, requires limited training and skill set, and is safer to
handle compared to the chemical mutagen. However, physical mutagen generates
mutations arbitrarily, and has a possibility to generate nonspecific or multiple
mutations in genome.

2.2.1 Physical and Chemical Mutagenesis

The most common physical mutagen uses ionizing radiation such as gamma rays
(4 < 0.01 nm), X-rays (4 = 0.01-10 nm), alpha particles, and non-ionizing radiation
such as UV rays (1 = 10400 nm) (Kodym and Afza 2003). The role of physical
mutagen operates by two mechanisms, direct and indirect. The direct effect involves
the direct ionizing of DNA strands owing to ejection or excitation of electrons to a
higher energy level (Ravanat and Douki 2016) (Table 2.1). The indirect effects are
produced by shifting of electrons to induce activate molecules, also known as free
radicals (OH" and H") that arise from OH™ and H*, resulting in base modification
and/or single—/double-stranded breaks in the DNA (Morita et al. 2009). These free
radical or reactive oxygen species (ROS) can result in the double strand breakages
(DSBs) causing deletions and translocations. In some cases point mutation can arise
owing to single-strand breaks (SSBs), or due to nitrogen base switchover for
example, the conversion of pyrimidine bases to 5-(hydroxymethyl) uracil,
5-formyluracil, 5-hydroxycytosine, and 5-hydroxyuracil (Min et al. 2003).

DNA damage due to UV light exposure can be explained by two mechanisms.
UVC (1 = 200-280 nm) and UVB (4 = 280-320 nm) are absorbed readily by
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nitrogenous bases, resulting in the trigger of excited states and formation of pyrimi-
dine dimers (Brash 2015). Whereas UVA (1 = 320-400 nm) and to some extent
visible light (A = 400-740 nm) interact via photosensitizers (produces chemical
modification in another molecule by means of photochemical reaction) to initiate the
DNA damage (Epe 2012).

Often, ionizing radiation results in the biological injuries to the cells and tissues.
Therefore, before starting the mutation studies, the exposure and dose should be
selectively controlled and maintained. Moreover, bacterial tissues are soft and hence
needs lower dose of radiation and exposure. In most of the scenario, the dosing is
often limited to 2-3 doses along with control; however, if the primary goal is to
obtain a decent amount of mutants in surviving population, the optimum dose should
be standardized to obtain the highest proportion of desirable mutants (Sauer 2001).

Unfortunately, either of induced or spontaneous mutations are of little use as the
exact mechanism of mutation needs to be thoroughly understood for its repetitive
and specific usage. From past many years, specific chemical mutagens like base
analogs, deaminating agents, alkylating agents, and intercalating agents are used for
the site-specific chemical mutagenesis to obtain desired mutant having industrial
application. Certain chemical compounds may result in changes in DNA structure or
its sequence, resulting in mutation. Such chemicals, which induce mutations, are
known as chemical mutagens. Chemical mutagens or genotoxic compounds are
natural as well as man-made. A strategy of using chemical agents to generate
mutations in desired strains is known as chemical mutagenesis. Base analogs and
DNA intercalating agents are two biggest class of chemical mutagens. A base analog
can replace a DNA base during replication and can result in transition mutations.
Whereas, intercalating agents are molecules that may get inserted in between DNA
bases, resulting in frameshift mutation during replication. Other chemical mutagens
may act by the generation of reactive oxygen species (ROS), deamination, alkyl-
ation, etc. (Table 2.2).

Chemical mutagens cannot perform a site-directed mutation and generally their
effect is hence random that to at multiple sites of genome. Mutagenesis has been
used since long in several microorganisms to enhance the performance and produc-
tivity arising from single or multiple gene traits (Giudici et al. 2005). A very good
example of such strain improvement is production of penicillin antibiotic from
Penicillium chrysogenum with huge increase of more than three orders of magni-
tude, attained after 65 years of research and development using multiple mutagenesis
techniques (Demain 2010).

2.2.2 Mutation Signature

A mutation signature is specific mutation owing to the unique mutagenesis process
(Brash 2015). The mutation signature helps to provide insight to screen out potential
mutant colonies and can further be used for targeted therapies, in case of oncology
(Forbes et al. 2017). However, the mutation signature currently is limited only in
oncology studies but can also be extended for the microbial cells. One of the key
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Table 2.2 Mode of action of physical and chemical mutagenic agents used for strain improvement

Agents Mutagens Mode of action Type of mutation
Physical Ionizing Single- and double-strand DNA Point mutation
radiations breaks, deamination, and
(y-rays, X-rays, dehydroxylation of nitrogenous
a-particle) bases
Non-ionizing Pyrimidine dimers, mitotic Frameshift mutations,
radiations crossing over; hydroxylation of base pair substitutions,
(UV-A,UV-B & | nitrogenous bases and cross- transversions, and
UV-0) linking DNA strands deletions
Chemical | Base analogs Thaimine analog tauntomerizes Transition
(5-FU) and pairs with guanidine
DNA Inserting an extra base opposite an | Transition and frameshift
intercalating intercalated molecule mutation
(EtBr,
Proflavine)
Alkylating Ethyl or methyl group transfer to
agents (EMS, nitrogenous bases, cross-linking
ENU, MNNG) of DNA strands
Deamining Interstrand cross-linking of DNA, | Transition
agents (HNO,) deamination of the amino group

of adenine, and cytosine to an
ether group

example of mutation signature is UV signature, where in the UV light is used to
target the two pyrimidines (C or T) adjacent to induce CC — TT substitutions (Brash
2015). Another example involving mutation signature is the bacterial cells which
undergoes stress during the radiation dose, owing to cellular and DNA damage. In
such case, the cellular repair mechanism becomes active, for example, the recA is
expressed due to DNA damage and thus expression of recA promoter is a suitable
choice for screening out the potential mutant colonies (Min et al. 1999).

23 Engineering Physiology of Microbes

For industrial application of any microbe, microbial physiology plays a major role
for the identification of production hosts and in designing strategies for strain
improvement. The metabolic activity gives reflections of the physiological
responses/adaptation to the external environments in which microorganisms are
growing. The physiological performance of the microorganism is a type of selection
criteria for its industrial usability. It is also influenced by the change and combination
in components present inside cells with respect to the external environments, viz. the
conditions prevailing during the fermentation process. Important physiological
characteristics like fitness, tolerance, and robust nature ensure the industrial value
of microorganisms. In this concern, the engineering of the microbial physiology is
important to make the process more industrial viable (Zhang et al. 2009).
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Fig. 2.2 Steps in physiological engineering

For physiological engineering, the most important thing to understand is the
mechanism of cells sensing and adapting to the environmental changes. Also, it is
important to critically analyze the specific adaptation of few organisms in extreme
conditions like high pH, temperature, and solvents. For successful engineering of
microbial physiological functions, below-mentioned steps can become helpful in
designing an industrial strategy for the strain improvement (Fig. 2.2).

1. Define the desired physiological characteristics.
2. Candidate screening.

3. Selection of host strain.

4. Engineering within host strain.

2.3.1 Desired Physiological Characteristics

The selection of the target strain possessing desired physiological characteristics is
based on the bioprocess used for compound/metabolite production. The factors
involved in the selection of process are mainly the market demand and cost of
process parameters like methods for strain improvement (upstream) and for purifi-
cation (downstream). For example, sulfuric acid is used for ethanol production from
the corn straw. During the process, to avoid contamination, acidic fermentation at
high temperature is prerequisite (Shaw et al. 2008). Also, with acidification at high
temperature, the microbial cells should also perform simultaneously hydrolysis of
the sugar to produce ethanol (Wisselink et al. 2009).

2.3.2 Candidate Screening

Strains with more desired characteristics are screened using tools like directed
evolution, non-specific mutagenesis, and stress-induced adaptations (Foster 2007;
Galhardo et al. 2007). The screened strain will be ideal/model candidate for genera-
tion of library for candidate strains for further screening. With much collection of
screened strains, the library contains strains which are having mutation at different
sites or have engineered genes important for the industrial applications. In practical
scenario, the targeted strain will possess the desired physiological characteristics by
using the different genetic tools and mutation strategies. However, once the
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collections of screened microbial strains are available, the efficiency of the process to
extract the desired screen heavily relies on high-throughput screening process.

2.3.3 Selection of Host Strain

Once the strain having desired characteristics is identified, further it is important to
understand the metabolic regulatory network/pathways along with the genes by
genome-wide annotations. However, the other microbial physiological
characteristics like fitness, tolerance, and robust nature depend on complex cell
components. Therefore, it is utmost important that during designing an physiological
engineering strategy, it is better to understand first the underlying physiological
characteristics of screened microorganism (Lee et al. 2006; Jeffries et al. 2007). This
gives a clear idea for selection of suitable host. The host which shows/exhibit the
most complex physiology and which is fully genetically characterized can be the
best suitable host for physiological engineering.

2.3.4 Engineering into the Host Strain

After successful screening of strain and identifying the host strain, the remaining part
is expression or infusion of the desired characteristics by various engineering
approaches. If the host microbe is strong and fit, the first target to be engineered
should be microbial regulatory metabolic capabilities. The host should also be
adaptable to the engineered changes so that the expression of the desired product
can be easily screened. Another approach can be the reverse engineering. In this
type, the host is not fit and robust, but it is highly metabolically active. The
promising route to proceed with such strain is to elucidate/decode the evolutionary
mechanism of stress-tolerant microorganisms. The rationale for selection of stress-
tolerant microorganisms is that the physiological characteristics can be transferred to
host strain by the DNA altering genes, transposons, or by genome shuffling (Foster
2007).

24  Metabolic Engineering

Metabolic engineering is intended for direct improvement in formation of product or
its cellular properties via alteration/modification in particular biochemical pathways
or by intruding the new set of specific regulatory genes with aid of recombinant
DNA technology (Stephanopoulos 1999; Nielsen 2001). Metabolic engineering has
emerged as new designing/engineering in which microorganisms are capable of
novel compound production. Technique is amalgamation of control of fluxes with
molecular tools and at the same time quantifies the fluxes with analytical methods for
getting the desired genetic alteration. The metabolic engineering has revealed that
the flux associate with a metabolic pathway is not a single rate-limiting step; instead
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it is dependent on many steps involved in the biochemical pathways (Kacser and
Acerenza 1993).

2.4.1 Methodologies and Tools for Metabolic Engineering

Before designing the different strategy/methodologies for metabolic engineering, it
is important to identify the key fundamental essential requirements:

. Detailed information of biosynthetic pathway of compound to be produced.
. Set of genes encoding the enzymes and its regulatory pathways.

. Methods to transfer and express the desired gene in the host organism.

. Different tools for in vivo and in vitro gene mutation.

AW N =~

Metabolic engineering normally starts with the genetic alteration which is
followed by characterization of gene expression and further analysis of change in
the metabolic pathway of the mutant. Many strategies are used for designing a
pathway for the metabolic engineering. Few major strategies are as follows:

2.4.2 Engineering of Biosynthetic Pathways

For engineering the biosynthetic pathway, the first step is to understand the key
components of pathways and its regulatory points.

(a) Increase the number of genes coding for rate-limiting steps in biosynthetic
pathway (Cremer et al. 1991).

(b) Increase/amplify the genes responsible for the branch or end point enzyme
which we can give direction to the intermediate compound to move the process.

(c) Infuse heterologous enzymes with unusual structures which can allow them to
bypass regulatory step.

(d) Infuse heterologous enzymes having diverse mechanisms which are function-
ally more advantageous (Ikeda et al. 1994).

(e) Inclusion of the enzyme which is divergence point for the central metabolic
pathway. This will lead to increase the flow of carbons in biosynthetic pathway.

2.4.3 Central Metabolism Engineering

Central metabolic pathways are the main suppliers of energy and precursors for
biosynthesis of many essential compounds. Engineering the central metabolic
pathways is very complicated as it is regulated globally, and the identification of
regulatory network pattern is yet to be resolved completely. For example, the
omission of phosphenolpyruvate carboxylase from the biosynthetic pathway has
led to increase the production of threonine by 40% in E. coli (Hermann 2004).
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Another example is of increase in lysine production in host strain C. glutamicum.
250% increase in lysine is reported by overexpression of pyruvate carboxylase and
aspartate kinase (Koffas et al. 2003). The pentose phosphate pathway which aids in
the synthesis of aromatic amino acids is responsible for major supply of NADPH,
ribose-5-phosphate, and erythrose-4-phosphate. By amplification using error-prone
PCR for transketolase gene, it increases the production of erythrose-4-phosphate
which leads to mutant having higher tryptophan production capacity (Ikeda and
Katsumata 1999).

2.4.4 Transport Engineering

Mutants that have modified transport systems can continue to thrive at low intracel-
lular level of the product. Such mutants are not subject to feedback control. For
example, there is significant increase in tryptophan and threonine yields using a
C. glutamicum and E. coli mutant generated by transport engineering (Ikeda and
Katsumata 1995). Mutants having dynamic efflux system and weak uptake system
can overexpress the amino acid without deregulation of biosynthetic pathways
(Ikeda 2003).

2.4.5 Engineering the Whole Cell

Majority of metabolic pathways and flux associated with the central metabolism is
extensively studied and elucidated in few microorganisms. However, the regulation
of flux and physiology is not reported in the microorganisms which are of industrial
interest. With much development in genetic tools, currently it is difficult to predict
possible product outcome of metabolic pathways when it is redirected. For example,
the intersection between the glycolysis and TCA cycle is most important for the
regulation of amino acid synthesis. Moreover, the control of pathway flux is not
controlled but shared. In this context, the inverse metabolic engineering, physiology
engineering, and systems biology have become important tools for designing an
industrially important mutant (Koffas and Stephanopoulos 2005). Novel approaches
like functional genomics and genomic breeding are trending as these tools can
identify and remove the unwanted mutants from the process (Petri and Schmidt-
Dannert 2004).

2,5 Genetic Engineering

The production level of desired compound from the natural wild type isolate is
always too low for the industrial applications. Henceforth, the strains are improved
using different engineering methods. Among all, the most important is genetic
engineering. In normal approach, by single step improvement, there is no significant
improvement in the product yield. In comparison, the genetic approach is specific for
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microbial engineering of industrial importance (Verdoes et al. 1995). The following
points needs to be considered for constructing the genetically engineered strain.

(a) Screening of the desired microbial strain.

(b) Cloning of desired gene required for the synthesis of desired protein/metabolite.
(c) Amplification for creating multiple copies of genes.

(d) Investigation of the expressed product.

2.5.1 Screening

The molecular basis of selection of specific strain depends on the specific enzyme
activity of the microbial strain (Van Gorcom et al. 1990). Once the specific strain is
selected, the desired enzyme/protein of interest is cloned from this strain. Many
methods are reported for gene cloning using different fungal species as host
organisms (Timberlake 1991). Routinely, the “reverse genetics” is used for inser-
tion/cloning of desired genes. This method works with very simple principle of
elucidation of genomic or cDNA from the isolated proteins from the cell extracts.
Briefly, the desired protein from the culture filtrate is purified and amino acid
sequence of purified protein is resolved. From the resolved amino acid sequence,
oligonucleotides are designed. These nucleotides are used for screening of cDNA
library. Further, DNA is amplified by PCR for further experimentation (Choi et al.
1993; Gomi et al. 1993).

2.5.2 Gene Expression

Host strains which are used for overproduction are mostly constructed by insertion
of multiple copies of gene of interest. However, the direct selection is not possible of
strains having multiple copies, henceforth the indirect selection of the strain having
multiple copies is done using a selectable marker. This selectable marker is inserted
in same vector as gene of interest. The transformed mutants have desired sequences
which are stable by integration with genome by homologous or nonhomologous
recombination. After insertion of the gene sequence, it is most important that the
gene is expressed at desired level. For example, in certain cases it was found that
even though strains possess multiple copies of gene but the expression level is not
significant. Therefore, for improvement of gene expression level, it is necessary to
design a system in which the expression levels of gene of interest can be controlled
or modified for higher yields (Verdoes et al. 1995).

2.5.3 Enzyme (Over)Production and Posttranscriptional Control

It is important to study a correlation between copies of gene of interests and protein
production. A previous finding suggests that with high copy numbers protein
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production levels are lower than expected. The amount of protein expressed in the
culture medium not only influences levels of expression but also the protein degra-
dation pattern was observed in a study conducted for overproduction of pectin lyase
enzyme (Kusters-van Someren et al. 1992).

Another approach can be possibly to associate posttranscriptional mechanisms
for tuning the expression of multiple genes in the operons. Pfleger et al. (2006) has
successfully demonstrated the library of tunable intergenic regions (TIGRs). TIGRs
consists of many control elements like mRNA, RNase cleavage sites, and couple of
sequestering sequences. TIGRs was able to modify the processes of transcription,
mRNA stability, and initiation of translation. Combination of RNAse site and TIGRs
in particular cleavage sites has helped to fragment (decouple) the coding region
stability helping the self-regulating expression variations. This method was success-
fully utilized for the optimization of flux for mevalonate pathway using host strain
E. coli. Using this method, significant increase of sevenfold increase in mevalonate
production was reported. This overexpression was observed due to counteractive
mechanism of HMGS and tHMGR reduction activity. Therefore, it is utmost impor-
tant to understand that combinatorial strategies for strain improvement will be able to
rescue the phenotypic variant for the beneficial changes in strain improvement. Also,
the combination will make the system much more understandable and clearer for
designing of novel tools for strain engineering.

2.6 Omics for Strain Engineering

With the advancement in DNA sequencing technologies, the data obtained from
DNA sequencing is much more rapid, reliable, and specific. Nowadays, for most of
the model organisms, complete genome sequences are there which increase the
postgenomic research in the strain development field. With help of complete data
set, it is easy to predict the probable outcome of the genotypic changes to be
incorporated for the strain improvement. Transcriptomics and proteomics allow
parallel analysis of mRNA and protein expression levels using the DNA microarrays
and two-dimensional gel electrophoresis system or mass spectrometry methods. The
other approach is metabolomics which quantifies the metabolites and intermediates
using the analytical technique mass spectrometry or nuclear magnetic resonance
spectrometry. The study of flux in the metabolic pathways; fluxomics allows the
quantification of metabolic fluxes based on balancing of metabolites or isotope
analysis.

2,6.1 Genome Analysis

Comparative genome analysis is a simple but very useful technique for the identifi-
cation of desired genes that can be inserted or deleted for achieving the desired
phenotypic change. Using the genome analysis, easy comparison is possible for the
wild type and mutant/engineered strains. In one approach, the only essential or active
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genes helpful for the metabolic functions are retained while the unnecessary genes
are deleted without any genomic or metabolic burdens (Kolisnychenko et al. 2002).
This technique used is called minimum strain development. The minimum strain
development suggests that only the metabolically active gene sets are present in the
host microorganisms. Ohnishi et al. (2002) has compared the genome sequence of
the wild-type corynebacterium strain to locate the genes having point mutation and
are also responsible for the overproduction of L-lysine. Even though, we have
succeeded in engineering of few industrially important strain at genome scale, but
the initiation in this field has led us to understand the engineering of local reactions in
the biosynthetic pathways and possibly can lead to significant improvement in the
performance of screened microorganism (Lee et al. 2005). The other major advan-
tage of genome analysis is that using the data of whole genome in silico metabolic
models can be developed which can give the prediction of expected gene expression
levels.

2.6.2 Transcriptome Analysis

With development of throughput DNA microarrays, the accuracy has increased for
quantification of the changes at the gene transcription levels by monitoring the
relative changes in mRNA level in multiple samples. Comparing the transcriptome
profiles of wild-type and mutant-type strains at different time points/culture
conditions helps to identify/locate the regulatory networks and probable target
genes to be altered/manipulated. The new information and understanding in this
way can be further used to improve the performance of microorganism. For example,
transcriptome profiles of E. coli used for the production of human insulin-like
growth factor was analyzed by high cell density culture method. From the data
sets of nearly about 200 genes, only those genes involved in the amino acid or
nucleotide biosynthetic pathways were targeted. Among these genes, the amplifica-
tion of prsA and glpF genes has shown increased production of IFG-I; production
from 1.8 to 4.3 g/L. These two genes were encoding for phophoribosyl pyrophos-
phate and glycerol transporter. The cited example suggests that the strategy for
targeted engineering-based approach using the global information will allow the
identification of gene which would be helpful for the construction of superior strain
giving high yield at industrial scale.

2.6.3 Proteome Analysis

Proteome analysis, a prevailing tool for the comparative analysis of two or more
protein spots, needs to be done showing varying intensity under different genetical
and environmental conditions. Also, proteome analysis is much more useful as the
central metabolic activities are correlated or mediated via proteins. Henceforth,
proteome analysis will give us edge to understand more regulatory networks of
metabolic pathways. The major disadvantage of proteome analysis is that every
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protein spot is not identified yet, and therefore the information gathered after
proteome profiling may be less compared to the transcriptome profiling. Best
example for the proteome analysis is proteome comparison of two E. coli strains.
The first strain was gathering the biodegradable polymer 3-hydroxybutyrate and the
other is wild-type/native E. coli strain. This comparison has helped in the identifica-
tion and understanding of the importance of protein Eda (2-keto-3-deoxy-6-
phosphogluconate aldolase) in poly(3-hydroxybutyrate) production by mutated/
engineered E. coli strain (Han et al. 2001). Another classic example is of comparison
of E. coli strains overproducing the human leptin. Interesting observation was that
the expression of few enzymes was decreased significantly, indicating the possible
limitation in serine biosynthetic pathways. At quantification levels, the content of
serine in leptin is about 11.6% which is significantly higher than the serine content
5.6% found in proteins expressed in E. coli (Han et al. 2003). The above-cited
examples indicate even though there is limited information in proteome profiling/
analysis, it can result into successful designing of a new strategy for strain
improvement.

2.6.4 Fluxome and Metabolome Analysis

2.6.4.1 Metabolome Analysis

The varied and dissimilar chemistry of different metabolites and availability of only
a limited number of detectable chemicals/standards turns the whole cell metabolome
profiling realistic. These analyses were possible due to the development of the high-
throughput quantification methods like NMR, gas chromatography (GC-MS), liquid
chromatography-mass spectrometry (LC-MS), and MALDI-TOF. Usually, the num-
ber of metabolites in cells are always fewer than the number of genes expressed in
specific conditions which give edge to metabolome analysis compare to the
transcriptomic and proteome analysis. For example, the low-molecular-weight
metabolites in S. cerevisiae is estimated to be only 560 which is very less compared
to genes or proteins expressed. Also few researchers have tried to integrate the
metabolome and transcriptome analysis for construction of mutant strain giving the
high yield. Furthermore, Wittmann and Heinzle (2001) has used the metabolome
profiling to understanding of flux distribution in Corynebacterium glutamicum.

2.6.4.2 Fluxome Analysis

For better understanding of cellular metabolic status, it is important to go for
metabolic flux analysis. As intracellular flux cannot be easily quantified, they are
usually measured using the bioinformatics approach. For calculation of fluxes,
practical data like substrate uptake and secreted product are constraints for proper
analysis. The isotope analysis/experiments can provide important information on the
intracellular fluxes. Usually, for the isotope analysis, the 13c carbon is labeled
uniformly on substrate in the process. Whenever, the substrate is metabolized in
the cell, isotope distribution can be located, and intracellular flux ratios can be
calculated (Wittmann and Heinzle 2001).
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2,6.5 Combined Omics Approach

The real integration of all omics approaches is still not a realistic. There are several
reported approaches where different combination of omics approach was tried for
improvement of strain. For example, the combination of transcriptome and proteome
was carried out in E. coli strain for overproduction of L-threonine. The results show
that genes involved in the TCA cycles, amino acid biosynthesis, and glyoxylate
shunt were upregulated compared to the downregulated ribosomal proteins. Due to
this combination, significant overproduction of L-threonine was reported (Lee et al.
2003).

Another classic example is of improvement of Aspergillus strain for production of
lovastatin. In this, a combination of transcriptome and metabolome analysis was
carried out. First, the libraries were constructed of the desired strains having desired
gene expressions. These screened strains were further characterized by the
metabolome and transcriptome profiling. By using these combination approach,
the resultant mutant strain was able to secret 50% more lovastatin compared to the
wild/native strain (Askenazi et al. 2003).

2.7 Conclusion

Microorganisms have natural tendency to produce compounds of industrial impor-
tance. The power of microbial culture needs to be appreciated due to fact that even
simple molecules which are similar to synthetic compounds are produced by
microorganisms using different fermentation process. Strain improvement programs
are completely required for commercial production of compounds at industrial scale.
To obtain these desired properties, it is utmost important to define the right host
strain having specific physiological, biochemical, and genetical functionalities.
Furthermore, advances in high-throughput screening and omics approaches have
enabled rapid isolation of mutant strains having desired expression profiles. We
believe that this review will provide the valuable insights for identifying and
designing strain optimization strategies to improve product yield and reduce the
fermentation economics.
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